読者です 読者をやめる 読者になる 読者になる

行列式の性質 (その6)

次の関係式を証明せよ。

 
  \left|
    \begin{array}{cccc}
      a_{11} & 0      & \ldots & 0 \\
      a_{21} & a_{22} & \ldots & a_{2n} \\
      \vdots & \vdots & \ddots & \vdots \\
      a_{n1} & a_{n2} & \ldots & a_{nn}
    \end{array}
  \right|
=a_{11}\left|
    \begin{array}{ccc}
      a_{22} & \ldots & a_{2n} \\
      \vdots & \ddots & \vdots \\
      a_{n2} & \ldots & a_{nn}
    \end{array}
  \right|


  \left|
    \begin{array}{cccc}
      a_{11} & a_{12} & \ldots & a_{1n} \\
      0      & a_{22} & \ldots & a_{2n} \\
      \vdots & \vdots & \ddots & \vdots \\
      0      & a_{n2} & \ldots & a_{nn}
    \end{array}
  \right|
=a_{11}\left|
    \begin{array}{ccc}
      a_{22} & \ldots & a_{2n} \\
      \vdots & \ddots & \vdots \\
      a_{n2} & \ldots & a_{nn}
    \end{array}
  \right|

(解答)上の等式を示す。
 左辺の行列式

 \sum sgn(\sigma(1) \, \sigma(2) \cdots \sigma(n))a_{1\sigma(1)}a_{2\sigma(2)}\cdots a_{n\sigma(n)}

とすれば、 \sigma(1) \neq 1のとき、 a_{1\sigma(1)} = 0
また、 \sigma(1)=1のとき、 sgn(1 \,\, \sigma(2) \cdots \sigma(n)) = sgn(\sigma(2) \cdots \sigma(n))
だから、
\begin{eqnarray} (左辺) =&  
\sum sgn(1 \,\, \sigma(2) \cdots \sigma(n))a_{11}a_{2\sigma(2)}\cdots a_{n\sigma(n)} \\
=&  a_{11}\sum sgn(\sigma(2) \cdots \sigma(n))a_{2\sigma(2)}\cdots a_{n\sigma(n)}\\ 
=&(右辺) 
\end{eqnarray}

広告を非表示にする